Papers
Journal of Geometry, 2017
Abstract. An n-arc in a projective plane is a collection of n distinct points in the plane, no three of which lie on a line. Formulas counting the number of n-arcs in any finite projective plane of order q are known for n ≤ 8. In 1995, Iampolskaia, Skorobogatov, and Sorokin counted 9-arcs in the projective plane over a finite field of order q and showed that this count is a quasipolynomial function of q. We present a formula for the number of 9-arcs in any projective plane of order q, even those that are non-Desarguesian, deriving Iampolskaia, Skorobogatov, and Sorokin’s formula as a special case. We obtain our formula from a new implementation of an algorithm due to Glynn; we give details of our implementation and discuss its consequences for larger arcs.
With Nathan Kaplan, Susie Kimport, Luke Peilen, and Max Weinreich